Abstract

HER2 expression-independent antitumor effect of trastuzumab deruxtecan (T-DXd) on pediatric solid tumors.

Author
person Nao Takasugi Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan info_outline Nao Takasugi, Takao Deguchi, Motohiro Kato
Full text
Authors person Nao Takasugi Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan info_outline Nao Takasugi, Takao Deguchi, Motohiro Kato Organizations Department of Pediatrics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan, Division of Cancer Immunodiagnostics, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan Abstract Disclosures Research Funding No funding sources reported Background: Treatment of pediatric solid tumors shows limited improvement even with intensification of conventional chemotherapy, suggesting novel approaches such as targeted therapies are needed. Trastuzumab Deruxtecan (T-DXd), a HER2-targeting antibody–drug conjugate, exhibits significant anti-cancer activity in breast cancers with a broad range of HER2 expression. T-DXd might be a promising agent for refractory or relapsed pediatric solid tumors, but its efficacy in pediatric tumors needs to be studied. Methods: Anti-cancer efficacy of T-DXd and its payload DXd were assessed in vitro by utilizing our in-house cancer cell line models. Cytotoxicity assays were performed for 60 pediatric cancer cell lines, including Neuroblastoma (NB) = 25, Ewing sarcoma / Ewing sarcoma family of tumors (EWS / EWSFT) = 17, Rhabdomyosarcoma (RMS) = 10, Others (Osteosarcoma, Brain tumor, Wilms tumor, Hepatoblastoma, and Malignant rhabdoid tumor (MRT) = 8, and 2 breast cancer cell lines expressing HER2 high or low (IHC score 2+ or 0) as positive or low control, respectively. We analyzed HER2 expression on the cell surface by flow cytometry and evaluated relative mean fluorescence intensity (MFI) values. Results: In the flow cytometric assessment, pediatric cancer cell lines showed smaller median MFI of 1.40 (0.67 - 2.71) compared with breast cancer control with HER2 high expression (33.77). The median MFI of each cell lines were 0.94 in NB, 1.76 in EWS / EWSFT, 1.42 in RMS, 1.52 in other pediatric cancers. Although low or no expression of HER2, certain inhibitory activities to the cell growth were observed for T-DXd against a part of NB, EWS, RMS and MRT cell lines, with the minimum IC 50 values of 14.5 nM, 6.5 nM, 10.2 nM, 8.1 nM, respectively. In NB, EWS and RMS, a wide range of sensitivity to T-DXd were seen among different cell lines in the same disease. Most of cell lines showed high sensitivity to DXd (Median IC 50 value: 0.90 nM [0.08 - 6.46 nM]), but, among them, cell lines with lower sensitivity to DXd tend to show less sensitivity to T-DXd. There was no clear correlation between sensitivity to T-DXd and HER2 expression among pediatric cancer cell lines, indicating that other mechanism such as intrinsic sensitivity to payload might affect antitumor activity of T-DXd. Conclusions: T-DXd exhibited antitumor efficacy against pediatric solid tumors in vitro irrespective of HER2 expression. Our results suggest that T-DXd might be an alternative therapy for pediatric solid tumor cases for whom conventional chemotherapies and other targeting therapies are ineffective. This study supports further investigation for T-DXd in this population.
Clinical status
Pre-clinical

3 organizations

2 drugs

1 target

Drug
DXd